16 research outputs found

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds

    Data from: Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: a proof-of-principle study

    No full text
    Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) –based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. In conclusion: These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI

    Evaluation of printed P(VDF-TrFE) pressure sensor signal quality in arterial pulse wave measurement

    No full text
    Abstract In this contribution, we evaluate the performance of an additively fabricated piezoelectric poly(vinylidenefluoride-cotrifluoroethylene) (P(VDF-TrFE)) based dynamic pressure sensor in non-invasive arterial pulse wave (PW) measurement. Additively fabricated piezoelectric sensors have high potential for the realization of affordable and unobtrusive PW measurement systems which could enable the long-term monitoring of patients with cardiovascular diseases (CVDs). However, the accuracy and reliability of such sensors have not been extensively studied before. We propose an additive fabrication process for a P(VDF-TrFE) PW-sensor, measure PW from the radial artery at the wrist from 22 healthy volunteer subjects, calculate clinically relevant parameters based on the PW waveform and compare their values to the values obtained from concurrent measurement with an electromechanical film (EMFi) based reference sensor, used earlier in several clinical studies. We show that the signals recorded with the two sensors, as well as the radial augmentation index (rAIx) and the stiffness index (SI) calculated from them, are in good agreement with each other. These results demonstrate that the additively fabricated P(VDF-TrFE) PW sensors can reach a suitable level of accuracy and reliability for clinical use

    Description of bacterial culture samples.

    No full text
    <p>The samples were analyzed in presented order.</p><p>Abbreviations: cysteine lactose electrolyte deficient.</p><p>Description of bacterial culture samples.</p

    Identification of bacterial species and sterile samples.

    No full text
    <p>Left-hand colums identify true classification of the samples. Top row shows the discrimination by LDA. S. saprophyticus is most commonly misclassified and is often confused with E. faecalis. Overall discrimination is very high.</p><p>Identification of bacterial species and sterile samples.</p
    corecore